Curiouser and Curiouser

Apparent Contradictions in Neural Network Observables

Weyl AI Research

January 2026

Abstract

We hypothesize that constraints which reduce wrong moves matter more than constraints
which reduce total moves. This reframes quantization, low-rank adaptation, and sparsity as
hallway selection problems rather than capacity-accuracy tradeoffs. A coarse lattice that blocks
bad directions may outperform a fine lattice that permits them. We formalize “good constraints”
via the signal-to-branching ratio p;, gradient capture ratio v;, and boundary-crossing rates

Bi, BT, Practitioner rule: choose the lowest rank and coarsest precision that keep 1); high,

B, fﬂ > 0, and p; > % We show this framework resolves apparent contradictions in the

literature—why LoRA matches full fine-tuning, why lottery tickets exist, why pruning helps,
why control vectors work despite the abundance of equivalent solutions.

1 The Standard View

The conventional understanding of neural network constraints:
Fewer parameters = less capacity = worse performance.

This predicts monotonic degradation:

fp32 > fpl6 > fp8 > fp4
full-rank > low-rank

dense > sparse

Each constraint removes representational capacity, so performance should degrade monotoni-
cally with constraint strength.

2 The Anomalies

Yet empirically, the hierarchy breaks:

e LoRA matches full fine-tuning with proper hyperparameters [I]. The “capacity gap” was
configuration, not fundamental.

e Lottery tickets match dense performance [2]. Sparse subnetworks, found by pruning,
match the original dense network.

e Int8 training sometimes outperforms fp16 [3]. Lower precision, better results.



¢ Pruning improves generalization [4]. Removing weights helps.
e L1 regularization works. Zero is special on the lattice.

e Stochastic rounding helps [5]. Noise that explores neighboring cells.

These are not isolated flukes. We observe them repeatedly, in different contexts, with different
architectures. All contradict continuous R™ theory where more parameters = more expressiveness
= better.

3 The Apparent Contradictions

The literature contains results that seem mutually incompatible:

“Abundance” Results “Structure” Results

Lottery tickets: 90% of weights Control vectors: specific direc-

prunable [2] tions steer behavior [6]

Git Re-Basin: all solutions Interpretability: specific neurons
equivalent mod permutation [7]  encode features [§]

LoRA: rank-16 is enough [9] Steering: fine-grained behavioral

control works [10]
Double descent: huge manifold of Transfer learning: representa-
minima [11] tions reliably transfer [12]
Adam finds solutions easily Linear probes work [13]

The puzzle: If there’s an abundance of equivalent solutions discoverable by AdamW, why
would specific directions mean anything? FEach random seed should produce different internal
structure.

And yet control vectors work. Steering vectors transfer. Linear probes find consistent features.

The resolution: The loss has gauge symmetry—a huge manifold of equivalent minima [14}, 15].
But the optimizer breaks the gauge consistently [16]. The broken directions become the control
vector directions.

4 The Hypothesis

Hypothesis 1 (Hallway). Constraints that reduce the number of wrong moves matter more than
constraints that reduce the number of total moves. Training succeeds when the signal-to-branching
ratio—the fraction of admissible moves that help—is high.

Consider two training regimes:
1. Open field: Many possible moves. Some help, most hurt.
2. Narrow hallway: Few possible moves. Most help.

The hallway is better—not despite having fewer moves, but because of it.



$

Open field Hallway
P~ 1/12 pr~1/2

Figure 1: Open field p; &~ 1/12 vs hallway p; ~ 1/2. Higher signal-to-branching ratio accelerates
progress by eliminating wrong moves. The hallway has fewer total moves but a higher fraction that
help.

5 Formalization

Let S be the update subspace (e.g., LoRA’s low-rank span) and R > 0 a step budget. Let @ be
the quantizer induced by the precision stack P.
Realized descent. Let ,ng denote the realized loss under precision stack P (see Lattice

Hypothesis). We call u a realized descent move if Egp(é?t +u) < Eg;(Qt). When we use VL
below, it is a surrogate (STE or omitted-cast gradients); all measurements use finite-difference
tests on Egp.

Locally finite. All stratification and flip-count claims are locally finite: on any compact
K C R", only finitely many strata and thresholds intersect K.

Definition 1 (Admissible Set). The admissible set at step t is:
Ar={ue S:|ul| <R, u=Q(u)}

sampled with p equal to the optimizer’s post-quantization proposal distribution. Set R to the opti-
mizer’s median update norm; ensure Ay # &.

Definition 2 (Descent Cone). The descent cone is:
Ci={uec A :VLEO) u <0}
Moves with negative directional derivative (surrogate). A move is “wrong” if VL u > 0.

Definition 3 (Signal-to-Branching Ratio). With base measure p (the optimizer’s proposal distri-
bution on A ):

H(Ct)
— — P
Py = ( t) —UNI"W,C u<0]

The fraction of admissible moves that are descent directions.

Definition 4 (Gradient Capture Ratio).

[PsVL|

=
vl

where Pg is projection onto the update subspace S.



Why ¢, and p, matter: For an L-smooth loss and update u € S
L0 +u) < LO)+VL u+ gHuHQ
Under optimizer distribution m on Ajy:
Er[AL] S —[IVL] - Ex[lu]l cos Z(VL, u)] + éEwHIUIIQ]

Higher vy and p; mean more negative cosines and faster progress. Sufficiency: If p, > % and
R is below the curvature-controlled threshold, the expected step is a descent step. This is the

sign-alignment condition from signSGD adapted to constrained optimization.

Definition 5 (Boundary-Crossing Rates). Weight rate:

[{i : |A8;| > 3ULP;}|

B = 0

Effective rate (includes activations):

M
fff = % Z 1{cell id;,, (0¢+1) # cell_id,,(6;)}
m=1

where cell_id is the rounding-decision vector for M probed tensors.
Both must be reported. High [5; with low ﬁfﬂ indicates boundary crossings in parameters
that do not change realized decisions—mno real progress.

Progress requires:

e 3, 3% > 0: Updates must actually cross cell boundaries on the precision lattice
e High 1;: The gradient must live in your update subspace

e > %: More than half of accessible moves should help

The practitioner’s rule: Pick the lowest rank and coarsest precision that keep ; high,
Bi, BT > 0, and p; > 3.

Generalization check: Compute p}® and 1! on a held-out batch to verify that a hallway
improves validation descent, not only training descent.

6 Explaining the Literature
6.1 LoRA Without Regret
Schulman et al. [I] found empirically:
1. Apply LoRA to all layers (not just attention)
2. Use 10x higher learning rate
3. LoRA matches full fine-tuning in “low regret regime”

Hallway interpretation:



e “Apply to all layers” = maximizes ;. MLPs have 2-3x more parameters than attention.
Attention-only LoRA misses most gradient mass. Low ¢, = hallway to nowhere.

e “10x learning rate” = keeps (; nonzero. LoRA has fewer parameters; same LR means
smaller updates in weight space. Higher LR raises the probability that quantized updates
exceed %ULP (higher f;), turning nonzero gradients into actual cell exits.

e “Low regret regime” = high ¢; AND high ;. Hallway exists and you’re walking down it.

Why LoRA sometimes fails:
e Attention-only: 1; too low, gradient escapes subspace
e Low LR: B too low, stuck in cell despite nonzero gradient

e Rank too low for task: hallway doesn’t reach good basin

6.2 rsLoRA

Kalajdzievski [I7] showed standard «/r scaling causes “gradient collapse” at high rank. The fix:
1/4/r scaling.

Hallway interpretation: The original scaling made per-parameter updates too small to cross
cell boundaries as rank increased. The 1/4/r scaling maintains (3; across ranks—boundary-crossing
rate management.

6.3 Lottery Tickets

Frankle & Carbin [2] showed sparse subnetworks match dense performance. Ramanujan et al. [18]
found untrained pruned networks that match trained dense networks.

Hallway interpretation: Most of fp32 parameter space is void—directions that don’t help.
Pruning removes the void. The remaining sparse network operates in a subspace where directions
matter. Lottery tickets are hallways that were always there; pruning reveals them.

6.4 Stochastic Rounding

Gupta et al. [5] showed stochastic rounding enables 16-bit training where round-to-nearest fails.

Hallway interpretation: Deterministic rounding can trap you in a cell—updates below ULP
round to zero, By = 0, training stagnates despite nonzero gradients. Stochastic rounding proba-
bilistically crosses boundaries that deterministic rounding cannot. It maintains 8; > 0 when the
learning rate would otherwise be sub-ULP.

6.5 Control Vectors Work

Turner et al. [0] and Zou et al. [I0] showed linear directions in activation space steer model
behavior.

Hallway interpretation: The gauge symmetry of the loss (huge manifold of equivalent so-
lutions) gets broken by the optimizer. The broken directions have semantic structure—they’re
not arbitrary. Control vectors exploit these broken gauge directions. The “abundance” is all the
hallways that exist on the gauge orbit. The “structure” is which hallways the optimizer actually
takes.



7 Quantization as Hallway Selection

A coarse lattice has fewer representable points. Updates that would move toward a nearby bad
minimum may:

1. Round to the current point (no movement—blocked hallway)
2. Round to a better point (skip the bad basin entirely)

The lattice geometry determines which hallways exist. Different lattices have different hallway
structures. A “worse” lattice (fewer bits) may have better hallways for a specific task.
This explains why:

¢ QAT outperforms PTQ [19]: Training learns which hallways exist on the target lattice.
Post-training quantization inherits hallways from a different lattice.

e Architecture search is precision-dependent: Different lattices have different hallway
structures. The architecture that wins at fp32 may lose at fp4.

e Same format helps one model, hurts another: Family-specific loss landscape topology
means family-specific hallway geometry.

8 What Would Falsify It

1. Monotonic degradation across all architectures and tasks. If constraints always hurt
regardless of structure, the hypothesis is wrong.

2. No architecture x format interaction. If format quality is intrinsic (fp32 always beats
fp16 always beats fp8), hallway effects aren’t real.

3. Random constraints helping as much as structured constraints. If randomly zeroing
weights helps as much as structured pruning, the “hallway” framing adds nothing.

4. ¢, and By uncorrelated with training progress. If the diagnostics don’t predict success,
the formalization is wrong.

9 Instrumentation
Key diagnostics:
e Boundary-crossing rate g;: Fraction of weight updates > % ULP
e Gradient capture v¢y: |PsVL|/|VL]| for subspace S
e ULP-normalized updates: Histogram of |Af|/ULP(0); progress requires mass above 0.5

e Per-layer 1;: Which layers have gradient escaping the LoRA subspace?

If By — 0, training stagnates regardless of gradient magnitude. If 1), drops at specific layers,
those layers need higher rank or full fine-tuning.

Constraints don’t just limit where you can go.
They limit where you can go wrong.



10 Connection to Classical Theory

The hallway framework connects to established analyses:

A

Projected/proximal gradient: Constraints improve descent by removing harmful direc-
tions; our p; quantifies the improvement ratio.

SignSGD and gradient compression: Progress under sign-alignment conditions; p; > 1/2
is the analogous sufficient condition here.

Random subspace methods: Progress with partial gradients when ; is high enough.

Error-feedback QSGD: Achieves 8; > 0 via residual accumulation, escaping cells that
would trap round-to-nearest.

Estimation Code

@torch.no_grad()
def estimate_pt_psit_realized(model, loss_fn, batch,

subspace_proj, quantize_step,
apply_step, K=64, R=1.0):

Estimate p_t and psi_t using realized loss (finite difference).

Args:
subspace_proj: g -> P_S(g) (project to LoRA subspace)
quantize_step: u -> Q(u) (apply precision stack)
apply_step: context manager that temporarily applies u_q
Returns:
p_hat: fraction of moves with realized descent
psi_t: gradient capture ratio (surrogate)
# Baseline realized loss
loss_base = loss_fn(model, batch).item()

# Surrogate gradient for psi_t

params = [p for p in model.parameters() if p.requires_grad]
loss = loss_fn(model, batch)

grads = torch.autograd.grad(loss, params)

g = torch.cat([gi.reshape(-1) for gi in grads])

# Gradient capture ratio
gS = subspace_proj(g)
psi_t = (gS.norm() / (g.norm() + 1le-12)).item()

# Sample admissible moves, test REALIZED descent
p_down = 0O
for _ in range(X):

z = torch.randn_like(gS)



u_dir = gS + 0.1 * z

u_dir = u_dir / (u_dir.norm() + 1le-12)

u =R * u_dir

u_q = quantize_step(u) # Cast to target lattice

# Finite-difference test on realized loss
with apply_step(model, u_q):
loss_new = loss_fn(model, batch).item()
if loss_new < loss_base: # Realized descent
p_down += 1

p_hat = p_down / K
return p_hat, psi_t

Generalization variant: Compute p/® and v}® on a held-out batch to check that a hallway

improves validation descent, not only training descent.

Sensitivity: Report p; under both optimizer proposal and uniform-on-ball to assess measure

dependence.
References
[1] Schulman, J., et al. (2025). LoRA without regret. Thinking Machines Lab.
[2] Frankle, J., & Carbin, M. (2019). The lottery ticket hypothesis: Finding sparse, trainable
neural networks. ICLR.
[3] Dettmers, T., Lewis, M., Belkada, Y., & Zettlemoyer, L. (2022). GPT3.int8(): 8-bit matrix
multiplication for transformers at scale. NeurIPS.
[4] Han, S., Pool, J., Tran, J., & Dally, W. J. (2015). Learning both weights and connections for
efficient neural networks. NeurIPS.
[5] Gupta, S., Agrawal, A., Gopalakrishnan, K., & Narayanan, P. (2015). Deep learning with
limited numerical precision. ICML.
[6] Turner, A., Thiergart, L., Udell, D., Leech, G., Mini, U., & MacDiarmid, M. (2023). Activation
addition: Steering language models without optimization. arXiv:2308.10248.
[7] Ainsworth, S., Hayase, J., & Srinivasa, S. (2023). Git Re-Basin: Merging models modulo
permutation symmetries. ICLR.
[8] Elhage, N., et al. (2022). Toy models of superposition. Anthropic.
[9] Hu, E. J., et al. (2022). LoRA: Low-rank adaptation of large language models. ICLR.
[10] Zou, A., et al. (2023). Representation engineering: A top-down approach to Al transparency.
arXiw:25310.01405.
[11] Belkin, M., Hsu, D., Ma, S., & Mandal, S. (2019). Reconciling modern machine learning

practice and the bias-variance trade-off. PNAS.



Neyshabur, B., Sedghi, H., & Zhang, C. (2020). What is being transferred in transfer learning?
NeurlPS.

Alain, G., & Bengio, Y. (2016). Understanding intermediate layers using linear classifier probes.
arXiv:1610.01644.

Brea, J., Simsek, B., Ged, F., & Gerstner, W. (2019). Weight-space symmetry in deep networks
gives rise to permutation saddles. arXiv:1907.02911.

Simsek, B., et al. (2021). Geometry of the loss landscape in overparameterized neural networks:
Symmetries and invariances. ICML.

Xie, S., & Li, Z. (2024). Implicit bias of AdamW: ¢, norm constrained optimization. ICML.

Kalajdzievski, D. (2023). A rank stabilization scaling factor for fine-tuning with LoRA.
arXiv:2312.03732.

Ramanujan, V., Wortsman, M., Kembhavi, A., Farhadi, A., & Rastegari, M. (2020). What’s
hidden in a randomly weighted neural network? CVPR.

Jacob, B., et al. (2018). Quantization and training of neural networks for efficient integer-
arithmetic-only inference. CVPR.

Biderman, D., et al. (2024). LoRA learns less and forgets less. arXiv:2405.09673.

Fujii, K., et al. (2024). Balancing speed and stability: The trade-offs of FP8 vs. BF16 training
in LLMs. arXiw:2411.08719.



	The Standard View
	The Anomalies
	The Apparent Contradictions
	The Hypothesis
	Formalization
	Explaining the Literature
	LoRA Without Regret
	rsLoRA
	Lottery Tickets
	Stochastic Rounding
	Control Vectors Work

	Quantization as Hallway Selection
	What Would Falsify It
	Instrumentation
	Connection to Classical Theory
	Estimation Code

