Building Real-Time Video Generation: Technical Deep Dive
Building Real-Time Video Generation: Technical Deep Dive
Real-time video generation has been the holy grail of generative AI. Today, we’re pulling back the curtain on how Weyl makes it possible.
The 60 FPS Challenge
To achieve 60 frames per second video generation, each frame must be generated in under 16.67ms. That’s not just fast—it’s extremely fast for a diffusion model that typically takes seconds per frame.
The Math
60 FPS = 1000ms / 60 = 16.67ms per frame50 denoising steps / 16.67ms = 0.33ms per step (!!)Clearly, standard approaches won’t work.
Our Solution: Streaming Diffusion
Instead of generating frames independently, we use a streaming architecture:
1. Latent Recycling
Each frame’s latent representation bootstraps the next:
# Conceptual (simplified)latent_t = alpha * latent_t-1 + (1 - alpha) * noiseThis reduces required denoising steps from 50 to ~8.
2. KV-Cache for Text Conditioning
Text embeddings are computed once and reused:
- First frame: Full CLIP encoding (~12ms)
- Subsequent frames: Cached embeddings (~0ms)
3. Temporal Consistency
We inject motion vectors between frames:
motion_vector = optical_flow(frame_t-1, frame_t)latent_t = warp(latent_t-1, motion_vector) + deltaThis maintains coherence while allowing changes.
Architecture
Pipeline Stages
Our inference pipeline is fully pipelined:
[Frame N-1: VAE Decode] → [Frame N: UNet] → [Frame N+1: Encode] ↓ ↓ ↓ Output Compute InputEach stage runs concurrently on different GPU SMs (streaming multiprocessors).
Memory Layout
Critical optimization: All tensors are pre-allocated in a ring buffer:
GPU Memory Layout:┌─────────────────────────────┐│ Latent Ring Buffer (8 slots)│ ← Circular buffer├─────────────────────────────┤│ Model Weights (FP4) │ ← Static, loaded once├─────────────────────────────┤│ KV-Cache (Text embeddings) │ ← Computed once└─────────────────────────────┘Zero allocations during generation = zero memory fragmentation.
Benchmarks
On Blackwell GB200:
| Resolution | FPS | Latency (P99) | Quality (LPIPS ↓) |
|---|---|---|---|
| 512x512 | 60 | 16.2ms | 0.042 |
| 768x768 | 30 | 32.1ms | 0.038 |
| 1024x1024 | 15 | 65.8ms | 0.035 |
Latency Breakdown
Where does the time go for a single 512x512 frame?
Total: 16.2ms├─ UNet Forward (8 steps): 11.4ms (70%)├─ VAE Decode: 3.2ms (20%)├─ Preprocessing: 0.9ms (5%)└─ Memory Transfers: 0.7ms (5%)The UNet is still the bottleneck—more optimization coming.
API: WebSocket Streaming
We use WebSockets for bidirectional streaming:
const ws = new WebSocket('wss://api.weyl.ai/v1/stream');
ws.send(JSON.stringify({ type: 'start', prompt: 'a cat walking through a garden', fps: 60, duration: 10 // seconds}));
ws.onmessage = (event) => { const frame = new Uint8Array(event.data); // Display frame displayFrame(frame);};Frames arrive as raw RGB24 data—no codec overhead.
Challenges & Solutions
Challenge 1: Thermal Throttling
Problem: Sustained 100% GPU utilization causes thermal throttling after ~30 seconds.
Solution: Dynamic batch size adjustment:
- Monitor GPU temperature
- Reduce batch size if temp > 82°C
- Gracefully degrade FPS instead of crashing
Challenge 2: Network Bandwidth
Problem: 60 FPS × 512×512×3 bytes = 47 MB/s minimum bandwidth.
Solution: Optional H.264 encoding:
- Client requests encoded stream
- We encode on-GPU using NVENC
- Bandwidth drops to ~2 MB/s
Challenge 3: Cold Start Latency
Problem: First frame takes 200ms (model loading, compilation).
Solution: Keep warm pools of pre-initialized inference contexts.
What’s Next
We’re working on:
- 1080p @ 60 FPS: Requires next-gen hardware (Rubin?)
- Temporal LoRAs: Style transfer that maintains consistency
- Interactive editing: Modify prompts mid-stream
Try It
Real-time video generation is available through the Weyl API. Check the documentation for details.
Learn more in the Video Generation API documentation.